5月15日,国际天文学权威期刊《皇家天文学会月报》刊登了相关研究成果。
研究过程艺术示意图。(中国科学院上海天文台供图)
据葛健介绍,宇宙冷气体和尘埃中的“中性碳吸收体”,是研究星系形成和演化的重要探针。但中性碳吸收线的信号微弱且极其稀少,需要在海量的类星体光谱数据中才能找到,使用传统的搜寻方法耗时费力,如同“大海捞针”。
研究团队通过使用人工智能的深度学习方法,设计神经网络,生成基于实际观测的中性碳吸收线特征的大量仿真样本,去训练深度学习神经网络,并使用这些被“训练好”的深度学习神经网络,在国际斯隆数字巡天项目第三期释放的数据中搜寻“中性碳吸收体”。
通过这一创新方法,研究团队很快发现了107例宇宙早期星系内的冷气体云块有“中性碳吸收体”。这一样本数是此前获得的最大样本数的近两倍,且探测到了更多比以前更微弱的信号。
发现了这么多冷气体的“中性碳吸收体”,研究团队把这些光谱叠加到一起,极大提高了探测各种金属元素丰度的能力,并能直接测量尘埃吸附导致的部分金属丰度缺失。
研究结果表明,早在宇宙只有约30亿年的年龄时(宇宙现在的年龄为约138亿年),这些携带“中性碳吸收体”探针的早期星系,已经过了快速物理和化学演化,进入了介于大麦哲伦矮星系和银河系之间的物理和化学演化状态,产生了大量的金属,同时部分金属被吸附到尘埃上,产生观测到的“尘埃红化”结果。
“我们这一发现,独立验证了近期詹姆斯·韦伯太空望远镜首次在宇宙最早的恒星中,探测到类似钻石的碳尘埃的新发现,预示部分星系的演化比预期要快得多,这将对现有的星系形成和演化模型形成挑战。”葛健说。
业内专家认为,此项研究是人工智能在天文大数据领域应用的一次重要突破。人工智能深度学习方法,在多领域图像识别以及微弱信号探测中,具有巨大的应用价值和潜力。未来,有望在海量的天文数据中挖到更多的“宝贝”。
标签: